Advanced Calculus and Mathematical Analysis: Derivatives, Integrals, and Graphical Analysis
This solved assignment explores derivatives, integrals, and graphical analysis in advanced calculus.
Ethan Wilson
Contributor
4.3
41
7 months ago
Preview (3 of 7 Pages)
100%
Purchase to unlock
Page 1
Loading page ...
Advanced Calculus and Mathematical Analysis: Derivatives, Integrals,and Graphical Analysis1)Find theslope of curve as( )()()( )( )3322939339039dhtttdtdddttdtdtdttt=−−=−−=−−=−At3t=slope is( )( )233 3927918h=−=−=Write the equation of line with slope18m=and point()()11,3,3ty=−as()()()113183318541857yym ttytytyt−=−− −=−+=−=−Thus, the equation of tangent line is1857yt=−. Hence, the correct option isB.2)The volume of sphere at3.0r=is()()31343.0336 3.14113.04 cmV===The volume of sphere at3.1r=is()()()323343.134 3.143.13124.72 cmV==The change in volume is33213124.72 cm113.04 cm11.68 cmVV−=−=Hence, the correct option isC.3)Asxtens to2 from left, the function value is( )2 226+=and asxtens to 2 from right, thefunction value is( )246+=, so to remove the discontinuity()2fmust be equal to 6.Hence, the correct option isB.4)To find the velocity function, differentiate position vector with respect totas( )()222222122dv ttdttt=+=+=+At1t=,( )1122 1141 m/sec2v=+==Hence, the correct option isB.5)Since the slope of line is positive in interval()5,3−−and()0,3, so0f in this interval.Since the slope of line is negative in interval()3,0−, so0f in this interval.
Page 2
Page 3
Preview Mode
This document has 7 pages. Sign in to access the full document!