Preview (2 of 3 Pages)100%Purchase to unlockPage 1Loading page ...Solution of System of Equations Using Matrix Method: A Step-by-Step ApproachQuestionSolve the following system of equations using matrix method:ππ+ππ+πππ=π,ππβππ+ππ=π,ππ+ππβπππ=πTopic:MatrixSub Topic:Solution of system of equations by matrix methodCLASS-XIISolution:Step-1βLet us assume that:1π₯=π,1π¦=πand1π§=π, the system takes the form:2π+3π+10π=4β¦β¦β¦β¦β¦β¦β¦ (1)4πβ6π+5π=1β¦β¦β¦β¦β¦β¦β¦β¦ (2)6π+9πβ20π=2β¦β¦β¦β¦β¦β¦β¦. (3)Step-2-Matrix equation and notationsThe above system is given by the matrix equation:AX = B OR X =π¨βππ©WhereA =[23104β6569β20]3π3,B =[412]3π1,X =[πππ]3π1Step-3-Determinant of A|π΄|=|23104β6569β20|=1200β 0βSystem has a unique solution and hence consistent.Step-4-Cofactorsπ΄11=75,π΄12=110,π΄13=72π΄21=150,π΄22=β100,π΄23=0π΄31=75,π΄32=30,π΄33=β24Step-5-Adjoint of APage 2Preview ModeThis document has 3 pages. Sign in to access the full document!Download Now!Report