DIAGNOSTIC TESTSTest AAlgebra1.(a)(−3)4= (−3)(−3)(−3)(−3) = 81(b)−34=−(3)(3)(3)(3) =−81(c)3−4=134=181(d)523521= 523−21= 52= 25(e)23−2=322=94(f )16−34=11634=14√163=123= 182.(a) Note that√200 =√100·2 = 10√2and√32 =√16·2 = 4√2. Thus√200− √32 = 10√2−4√2 = 6√2.(b)(333)(42)2= 3331624= 4857(c)33232−12−2=2−1233232= (2−12)2(3323)2=4−1936=4936=973.(a)3(+ 6) + 4(2−5) = 3+ 18 + 8−20 = 11−2(b)(+ 3)(4−5) = 42−5+ 12−15 = 42+ 7−15(c)√+√ √− √=√2− √√+√√−√2=−Or:Use the formula for the difference of two squares to see that√+√√− √=√2−√2=−.(d)(2+ 3)2= (2+ 3)(2+ 3) = 42+ 6+ 6+ 9 = 42+ 12+ 9.Note:A quicker way to expand this binomial is to use the formula(+)2=2+ 2+2with= 2and= 3:(2+ 3)2= (2)2+ 2(2)(3) + 32= 42+ 12+ 9(e) See Reference Page 1 for the binomial formula(+)3=3+ 32+ 32+3. Using it, we get(+ 2)3=3+ 32(2) + 3(22) + 23=3+ 62+ 12+ 8.4.(a) Using the difference of two squares formula,2−2= (+)(−), we have42−25 = (2)2−52= (2+ 5)(2−5).(b) Factoring by trial and error, we get22+ 5−12 = (2−3)(+ 4).(c) Using factoring by grouping and the difference of two squares formula, we have3−32−4+ 12 =2(−3)−4(−3) = (2−4)(−3) = (−2)(+ 2)(−3).(d)4+ 27=(3+ 27) =(+ 3)(2−3+ 9)This last expression was obtained using the sum of two cubes formula,3+3= (+)(2−+2)with=and= 3. [See Reference Page 1 in the textbook.](e) The smallest exponent onis−12, so we will factor out−12.332−912+ 6−12= 3−12(2−3+ 2) = 3−12(−1)(−2)(f )3−4=(2−4) =(−2)(+ 2)
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
Page 14
Page 15
Page 16
Page 17
Page 18
Page 19
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Preview Mode
This document has 783 pages. Sign in to access the full document!