AP Calculus AB: Chapter 9 Practice Test
This section provides examples of evaluating a variety of indefinite integrals using basic rules and substitution methods. It includes exponential, polynomial, and trigonometric integrals, as well as guidance on selecting appropriate substitution expressions to simplify integration.
Evaluate the indefinite integral ∫√u(u^3−1)du.
2/9u^9/2−2/3u^3/2+C
Key Terms
Evaluate the indefinite integral ∫√u(u^3−1)du.
2/9u^9/2−2/3u^3/2+C
Evaluate the indefinite integral∫x^5+2x^2−e^2/x dx.
x^5/5+x^2−e^2lnx+C
Evaluate the indefinite integral∫5e^xdx.
5e ^x + C
Evaluate the indefinite integral∫e^x+e^−x/2dx.
1/2(e^x−e^−x)+C
Evaluate the indefinite integral ∫(2x−1)^100dx
(2x−1)^101/202+C
Evaluate the indefinite integral ∫x−1/(x^2−2x+5)^3dx
None of the above
Related Flashcard Decks
Study Tips
- Press F to enter focus mode for distraction-free studying
- Review cards regularly to improve retention
- Try to recall the answer before flipping the card
- Share this deck with friends to study together
| Term | Definition |
|---|---|
Evaluate the indefinite integral ∫√u(u^3−1)du. | 2/9u^9/2−2/3u^3/2+C |
Evaluate the indefinite integral∫x^5+2x^2−e^2/x dx. | x^5/5+x^2−e^2lnx+C |
Evaluate the indefinite integral∫5e^xdx. | 5e ^x + C |
Evaluate the indefinite integral∫e^x+e^−x/2dx. | 1/2(e^x−e^−x)+C |
Evaluate the indefinite integral ∫(2x−1)^100dx | (2x−1)^101/202+C |
Evaluate the indefinite integral ∫x−1/(x^2−2x+5)^3dx | None of the above |
Evaluate the indefinite integral ∫dx/√x+1 | 2√x+1+C |
Which of the following expression is correct substitution to use for u when evaluating the integral ∫(4x^3+6x)cos(x^4+3x^2+5)dx ? | x^ 4 + 3x^ 2 + 5 |
Which of the following values of u is the correct substitution to use when evaluating the integral ∫sec^2(7x+9)dx ? | (7x + 9) |
Use the substitution u=(2x^4−2) to evaluate the ∫x^3^e(2x^4−2)dx. | 1/8e^(2x^4−2)+C |
Which of the following values of u is the correct substitution to use when evaluating the integral ∫e^x/6+e^x dx ? | 6+e^x |
Evaluate the integral ∫4x^3+6x+5/√x^4+3x^2+5x −4 dx . | 2√x^4+3x^2+5x−4+C |
What is the area between the curve y = cos x + 3 and the x-axis from x = 0 to x = 2π? | 6π |
What is the area between the curve g (x) = 3x^ 2 + 2 and the x-axis from x = −2 to x = 0? | 12 |
What is the area bound by the curve y=x^4−2/x^2 and the x-axis from x=4 to x=6? | 50.5 |
What is the area beneath the curve y = −x^ 2 − 6x − 5 and above the x-axis? | 32/3 |
Evaluate ∫13 7 2 1/x^2√x^2−9 dx | 4/819*√10 |
Evaluate ∫ 2 −2 6 1(/16−x^2)^3/2dx. | 1/4*√3 |
Approximate the integral ∫ 4 1 3/x dx using the trapezoidal rule with N=4. | 4.284 |
Approximate the integral ∫ 7 1 1/5x dx using the trapezoidal rule with N=3. | 0.442 |