AP Calculus AB: Chapter 9 Test
This section contains a series of indefinite integral problems solved using standard integration rules, substitution, and simplification techniques. It features exponential, logarithmic, trigonometric, and rational expressions, demonstrating the diversity of integration strategies required across different function types.
Evaluate the indefinite integral ∫(2x^4+√3x+1)dx.
2/5 x^5+2√3/3 x^3/2+x+C
Key Terms
Evaluate the indefinite integral ∫(2x^4+√3x+1)dx.
2/5 x^5+2√3/3 x^3/2+x+C
Evaluate the indefinite integral∫x^3+3x^2−ln3/√x dx
2/7 x^7/2+6/5 x^5/2−(2ln3)x^1/2+C
Evaluate the indefinite integral∫⎛⎝e^x/5+x^2√x⎞⎠dx.
e^x/5+2/7x^7/2+C
Evaluate the indefinite integral∫sin x/cos√2dx.
−cos x/cos√2+C
Evaluate the indefinite integral ∫dx/(5x−3)^2.
-1/5(5x-3) + C
Evaluate the indefinite integral ∫dx/√x(1−√x)^3
1/(1−√x)^2+C
Related Flashcard Decks
Study Tips
- Press F to enter focus mode for distraction-free studying
- Review cards regularly to improve retention
- Try to recall the answer before flipping the card
- Share this deck with friends to study together
| Term | Definition |
|---|---|
Evaluate the indefinite integral ∫(2x^4+√3x+1)dx. | 2/5 x^5+2√3/3 x^3/2+x+C |
Evaluate the indefinite integral∫x^3+3x^2−ln3/√x dx | 2/7 x^7/2+6/5 x^5/2−(2ln3)x^1/2+C |
Evaluate the indefinite integral∫⎛⎝e^x/5+x^2√x⎞⎠dx. | e^x/5+2/7x^7/2+C |
Evaluate the indefinite integral∫sin x/cos√2dx. | −cos x/cos√2+C |
Evaluate the indefinite integral ∫dx/(5x−3)^2. | -1/5(5x-3) + C |
Evaluate the indefinite integral ∫dx/√x(1−√x)^3 | 1/(1−√x)^2+C |
Evaluate the indefinite integral ∫x^2dx/x^3−e^3 | 1/3ln∣x^3−e^3∣+C |
Use the substitution u=(x^4+3x^2+5)to evaluate the integral∫(4x^3+6x)cos(x^4+3x^2+5)dx. | sin (x ^4 + 3x ^2 + 5) + C |
Use the substitution u=(7x+9) to evaluate the integral ∫sec^2(7x+9)dx . | 1/7tan(7x+9)+C |
Which of the following values of u is the correct substitution to use when evaluating the integral ∫x^3e^(2x^4−2)dx ? | (2x^ 4 − 2) |
Use the substitution u=6+e^x to evaluate the integral∫e^x/6+e^x dx . | ln|6+e^x|+C |
Evaluate ∫(12x^3−18x−27)e^(x^4−3x^2−9x+1)dx. | 3e^(x^4−3x^2−9x+1)+C |
What is the area beneath the curve y = e^ 3x + 3 from x = −1 to x = 4? | 1/3(e^15−1) |
What is the area beneath the curve y = x^1/2+1/x from x = 4 to x = 9? | 38/3+ln9/4 |
What is the area between the curve h(x)=sin x+cos x and the x-axis from x= 0 to x = π/2? | 2 |
What is the area beneath the curve g (x) = e^ x + 2x + cos x from x = π to x = 2π? | e^2π−e^π+3π^2 |
Evaluate ∫ 2 -1 5 1/(9−x^2)^3/2dx. | 2/9 √5+5/36 √2 |
Evaluate ∫3 −1 7 x/√36−x^2 dx. | −21√3+7√35 |
Approximate the integral ∫ 6 2 x^2 dx using the trapezoidal rule N=4. | 70 |
Approximate this integral ∫π/2 π/4 sin(x) dx using the trapezoidal rule with N=4. | 0.705 |